Linear Model Theory: Univariate, Multivariate, and Mixed Models

نویسنده

  • Xianggui Qu
چکیده

Description: A precise and accessible presentation of linear model theory, illustrated with data examples Statisticians often use linear models for data analysis and for developing new statistical methods. Most books on the subject have historically discussed univariate, multivariate, and mixed linear models separately, whereas Linear Model Theory: Univariate, Multivariate, and Mixed Models presents a unified treatment in order to make clear the distinctions among the three classes of models. Linear Model Theory: Univariate, Multivariate, and Mixed Models begins with six chapters devoted to providing brief and clear mathematical statements of models, procedures, and notation. Data examples motivate and illustrate the models. Chapters 7-10 address distribution theory of multivariate Gaussian variables and quadratic forms. Chapters 11-19 detail methods for estimation, hypothesis testing, and confidence intervals. The final chapters, 20-23, concentrate on choosing a sample size. Substantial sets of excercises of varying difficulty serve instructors for their classes, as well as help students to test their own knowledge. The reader needs a basic knowledge of statistics, probability, and inference, as well as a solid background in matrix theory and applied univariate linear models from a matrix perspective. Topics covered include:-A review of matrix algebra for linear models-The general linear univariate model-The general linear multivariate model-Generalizations of the multivariate linear model-The linear mixed model-Multivariate distribution theory-Estimation in linear models-Tests in Gaussian linear models-Choosing a sample size in Gaussian linear models Filling the need for a text that provides the necessary theoretical foundations for applying a wide range of methods in real situations, Linear Model Theory: Univariate, Multivariate, and Mixed Models centers on linear models of interval scale responses with finite second moments. Models with complex predictors, complex responses, or both, motivate the presentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)

Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...

متن کامل

Phase II monitoring of auto-correlated linear profiles using linear mixed model

In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...

متن کامل

طراحی شبکه عصبی مصنوعی برای مدل‌بندی پاسخ‌های دو متغیره آمیخته و کاربرد آن در داده‌های پزشکی

Background & Objective: Mixed outcomes arise when, in a multivariate model, response variables measured on different scales such as binary and continuous. Artificial neural networks (ANN) can be used for modeling in situations where classic models have restricted application when some of their assumptions are not met. In this paper, we propose a method based on ANNs for modeling mixed binary a...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Technometrics

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2007